论文标题

形状受约束的CNN,用于分割的指导性心肌形状预测和心脏MRI中的姿势参数

Shape constrained CNN for segmentation guided prediction of myocardial shape and pose parameters in cardiac MRI

论文作者

Tilborghs, Sofie, Bogaert, Jan, Maes, Frederik

论文摘要

使用卷积神经网络(CNN)的语义分割是许多医学图像分割任务的最新技术,包括心脏MR图像中的心肌分割。但是,从这种标准CNN获得的预测分割图不允许直接量化区域形状特性,例如区域壁厚。此外,CNN缺乏明确的形状约束,有时会导致不现实的分割。在本文中,我们使用CNN来预测从训练图的训练集中学到的心肌的基本统计形状模型的形状参数。此外,预测心脏姿势,可以重建心肌轮廓。集成形状的模型将预测的轮廓规范化并保证了逼真的形状。我们通过在训练过程中同时执行像素语义分割来实现形状和姿势预测的鲁棒性,并定义两个损失函数以在两个预测的表示之间实现一致性:一个基于距离的损失和一个基于重叠的损失。我们在具有75名受试者以及ACDC和LVQUAN19公共数据集的内部临床数据集上进行了5倍的交叉验证中提出的方法。我们展示了同时语义分割的好处,以及对形状参数预测的两个新定义的损失函数。我们的方法在三个数据集上的左心室(LV)面积达到了99%的相关性,心肌区域的91%至97%之间的相关性为91%至97%,LV尺寸为98-99%,区域壁厚厚度为80%和92%。

Semantic segmentation using convolutional neural networks (CNNs) is the state-of-the-art for many medical image segmentation tasks including myocardial segmentation in cardiac MR images. However, the predicted segmentation maps obtained from such standard CNN do not allow direct quantification of regional shape properties such as regional wall thickness. Furthermore, the CNNs lack explicit shape constraints, occasionally resulting in unrealistic segmentations. In this paper, we use a CNN to predict shape parameters of an underlying statistical shape model of the myocardium learned from a training set of images. Additionally, the cardiac pose is predicted, which allows to reconstruct the myocardial contours. The integrated shape model regularizes the predicted contours and guarantees realistic shapes. We enforce robustness of shape and pose prediction by simultaneously performing pixel-wise semantic segmentation during training and define two loss functions to impose consistency between the two predicted representations: one distance-based loss and one overlap-based loss. We evaluated the proposed method in a 5-fold cross validation on an in-house clinical dataset with 75 subjects and on the ACDC and LVQuan19 public datasets. We show the benefits of simultaneous semantic segmentation and the two newly defined loss functions for the prediction of shape parameters. Our method achieved a correlation of 99% for left ventricular (LV) area on the three datasets, between 91% and 97% for myocardial area, 98-99% for LV dimensions and between 80% and 92% for regional wall thickness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源