论文标题

委派在线搜索

Delegated Online Search

论文作者

Braun, Pirmin, Hahn, Niklas, Hoefer, Martin, Schecker, Conrad

论文摘要

在代表团问题中,具有承诺权力的主要P试图从$ n $选项中挑选一个。每个选项都独立于已知分布绘制。 P将信息获取委派给了一个理性和自私的代理A,而不是亲自检查选项。在检查后,A提出了一个选项,P可以接受或拒绝。 代表团是经济信息设计的经典环境,具有许多突出的应用,但是计算问题只能理解。在本文中,我们研究了代表团的自然在线变体,其中代理商以在线方式搜索选项。对于每个选项,他必须不可撤销地决定是否要提出当前选项或丢弃它,然后再查看下一个选项的信息。我们如何为P设计算法,以近似她最佳选择的效用? 我们表明,总体上P可以获得$θ(1/n)$ - 近似值,并将此结果扩展到$θ(k/n)$的比率,以防(1)a具有$ k $ rounds的lookahead,或(2)a可以提出最多$ k $的选择。我们根据两个参数提供独立于$ n $的细粒度边界。如果A的最大值和最小实用程序的比率由因子$α$界定,我们将获得$ω(\ log \ log \logα/ \logα)$ - 近似算法,并且我们表明这是最好的。此外,如果P无法区分自己的值,我们表明无法避免$ 1/α$的多项式。如果每个选项的P和A的实用程序与因子$β$相关,则我们获得了$ω(1/ \logβ)$ - 近似,其中$ o(\ log \ log \ logβ/ \logβ)$是最好的。

In a delegation problem, a principal P with commitment power tries to pick one out of $n$ options. Each option is drawn independently from a known distribution. Instead of inspecting the options herself, P delegates the information acquisition to a rational and self-interested agent A. After inspection, A proposes one of the options, and P can accept or reject. Delegation is a classic setting in economic information design with many prominent applications, but the computational problems are only poorly understood. In this paper, we study a natural online variant of delegation, in which the agent searches through the options in an online fashion. For each option, he has to irrevocably decide if he wants to propose the current option or discard it, before seeing information on the next option(s). How can we design algorithms for P that approximate the utility of her best option in hindsight? We show that in general P can obtain a $Θ(1/n)$-approximation and extend this result to ratios of $Θ(k/n)$ in case (1) A has a lookahead of $k$ rounds, or (2) A can propose up to $k$ different options. We provide fine-grained bounds independent of $n$ based on two parameters. If the ratio of maximum and minimum utility for A is bounded by a factor $α$, we obtain an $Ω(\log \log α/ \log α)$-approximation algorithm, and we show that this is best possible. Additionally, if P cannot distinguish options with the same value for herself, we show that ratios polynomial in $1/α$ cannot be avoided. If the utilities of P and A for each option are related by a factor $β$, we obtain an $Ω(1/ \log β)$-approximation, where $O(\log \log β/ \log β)$ is best possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源