论文标题
骑自行车者和行人的网络受限跟踪框架
Framework for Network-Constrained Tracking of Cyclists and Pedestrians
论文作者
论文摘要
连接的移动传感器平台(例如自动驾驶车辆,无人机和机器人)的感知功能的增加导致在各种时间和空间尺度上广泛感知的功能。除了传统的安全操作用途外,可用的观察结果还可以使人们能够在人行行和周期路径上移动以及最终获得较大区域中交通流的完整显微镜和宏观的图片。本文提出了一种用于高级流量应用程序的新方法,以使用移动(例如车辆)空间分布的传感器平台来跟踪受道路网络约束的未知数和不同数量的移动目标(例如行人或骑自行车的人)。本文的关键贡献是将网络绑定目标的概念介绍到多目标跟踪问题中,从而导致网络约束的多刺激性跟踪器(NC-MHT)充分利用可用的道路信息。这是通过引入目标表示形式,包括传统的目标跟踪表示形式和将目标放在网络中给定段上的离散组件来完成的。一项仿真研究表明,该方法与自由空间中的标准MHT滤波器相比表现良好。结果特别突出了与不利用网络结构相比,在长时间和简化测量关联过程的简化过程中,对更有效的目标预测进行了更有效的目标预测的效果。这项理论工作还将注意力引向潜在应用的潜在隐私问题。
The increase in perception capabilities of connected mobile sensor platforms (e.g., self-driving vehicles, drones, and robots) leads to an extensive surge of sensed features at various temporal and spatial scales. Beyond their traditional use for safe operation, available observations could enable to see how and where people move on sidewalks and cycle paths, to eventually obtain a complete microscopic and macroscopic picture of the traffic flows in a larger area. This paper proposes a new method for advanced traffic applications, tracking an unknown and varying number of moving targets (e.g., pedestrians or cyclists) constrained by a road network, using mobile (e.g., vehicles) spatially distributed sensor platforms. The key contribution in this paper is to introduce the concept of network bound targets into the multi-target tracking problem, and hence to derive a network-constrained multi-hypotheses tracker (NC-MHT) to fully utilize the available road information. This is done by introducing a target representation, comprising a traditional target tracking representation and a discrete component placing the target on a given segment in the network. A simulation study shows that the method performs well in comparison to the standard MHT filter in free space. Results particularly highlight network-constraint effects for more efficient target predictions over extended periods of time, and in the simplification of the measurement association process, as compared to not utilizing a network structure. This theoretical work also directs attention to latent privacy concerns for potential applications.