论文标题

准组代码的渐近特性

Asymptotic Properties of Quasi-Group Codes

论文作者

Fan, Yun, Lin, Liren

论文摘要

这是为书准备的一章的手稿。良好的代码具有较大的信息长度和较大的最小距离。如果存在正面的$δ$,则据说一类代码在渐近上是好的,这样,对于任何正整数$ n $,我们都可以在班级中找到代码长度大于$ n $的代码,并且速率和相对最小距离大于$δ$。任何有限字段上的线性代码在渐近上都是好的。更有趣的是,(渐近)GV结合是线性代码的相变点。即,渐近地说,大多数线性代码的参数都达到了GV结合。这是一个长期的开放问题:有限领域上的环形代码(这是重要的代码类别)是否渐近地好?但是,从很久以前开始,索引$ 2 $的准环境代码在渐近上是渐进的。本章包括我们关于几类准组代码的渐近特性的一些研究。我们将以一致且独立的风格来解释研究。我们从线性代码上的经典结果开始。在许多情况下,我们考虑了有限的阿贝尔群体(包括循环案例作为亚案例)上的准组代码,并沿两个方向研究它们的渐近性质:(1)群体(coindex)的顺序(coindex)是固定的,而指数则为无穷大; (2)指数很小,而组(CoIndex)的顺序将到无穷大。最后,我们描述了有关二面代码的故事。二面群是非亚伯利亚人,但靠近环状群体(它们具有索引的环状亚组$ 2 $)。二进制二面代码的渐近优点是在本世纪初获得的,最近扩展到了一般的二面代码。

This is a manuscript of a chapter prepared for a book. The good codes possess large information length and large minimum distance. A class of codes is said to be asymptotically good if there exists a positive real $δ$ such that, for any positive integer $N$ we can find a code in the class with code length greater than $N$, and with both the rate and the relative minimum distance greater than $δ$. The linear codes over any finite field are asymptotically good. More interestingly, the (asymptotic) GV-bound is a phase transition point for the linear codes; i.e., asymptotically speaking, the parameters of most linear codes attain the GV-bound. It is a long-standing open question: whether or not the cyclic codes over a finite field (which are an important class of codes) are asymptotically good? However, from a long time ago the quasi-cyclic codes of index $2$ were proved to be asymptotically good. This chapter consists of some of our studies on the asymptotic properties of several classes of quasi-group codes. We'll explain the studies in a consistent and self-contained style. We begin with the classical results on linear codes. In many cases we consider the quasi-group codes over finite abelian groups (including the cyclic case as a subcase of course), and study their asymptotic properties along two directions: (1) the order of the group (the coindex) is fixed while the index is going to infinity; (2) the index is small while the order of the group (the coindex) is going to infinity. Finally we describe the story on dihedral codes. The dihedral groups are non-abelian but near to cyclic groups (they have cyclic subgroups of index $2$). The asymptotic goodness of binary dihedral codes was obtained in the beginning of this century, and extended to the general dihedral codes recently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源