论文标题

CD-GAN:一种基于强大的融合生成对抗网络,用于使用异质传感器无监督的遥感变化检测

CD-GAN: a robust fusion-based generative adversarial network for unsupervised remote sensing change detection with heterogeneous sensors

论文作者

Wang, Jin-Ju, Dobigeon, Nicolas, Chabert, Marie, Wang, Ding-Cheng, Huang, Ting-Zhu, Huang, Jie

论文摘要

在地球观察的背景下,变化检测归结为比较在不同时间通过可能不同的空间和/或光谱分辨率或不同模态(例如光学或雷达)的传感器获得的图像。即使仅考虑光学图像,只要传感器因其空间和/或频谱分辨率而异,该任务就被证明是具有挑战性的。本文提出了一种新颖的无监督变更检测方法,该方法专门针对这种所谓的异质光传感器获得的图像。它利用了最新进展,将变更检测任务制定为强大的融合框架。通过这种配方,本文报告的工作表明,任何事先训练的现成的网络可以融合不同空间和/或光谱分辨率的光学图像,可以轻松地与相同体系结构的网络相辅相成,并嵌入到对抗性框架中以执行变化检测。与最先进的变更检测方法的比较证明了拟议方法的多功能性和有效性。

In the context of Earth observation, change detection boils down to comparing images acquired at different times by sensors of possibly different spatial and/or spectral resolutions or different modalities (e.g., optical or radar). Even when considering only optical images, this task has proven to be challenging as soon as the sensors differ by their spatial and/or spectral resolutions. This paper proposes a novel unsupervised change detection method dedicated to images acquired by such so-called heterogeneous optical sensors. It capitalizes on recent advances which formulate the change detection task into a robust fusion framework. Adopting this formulation, the work reported in this paper shows that any off-the-shelf network trained beforehand to fuse optical images of different spatial and/or spectral resolutions can be easily complemented with a network of the same architecture and embedded into an adversarial framework to perform change detection. A comparison with state-of-the-art change detection methods demonstrates the versatility and the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源