论文标题

部分可观测时空混沌系统的无模型预测

MIAShield: Defending Membership Inference Attacks via Preemptive Exclusion of Members

论文作者

Jarin, Ismat, Eshete, Birhanu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In membership inference attacks (MIAs), an adversary observes the predictions of a model to determine whether a sample is part of the model's training data. Existing MIA defenses conceal the presence of a target sample through strong regularization, knowledge distillation, confidence masking, or differential privacy. We propose MIAShield, a new MIA defense based on preemptive exclusion of member samples instead of masking the presence of a member. The key insight in MIAShield is weakening the strong membership signal that stems from the presence of a target sample by preemptively excluding it at prediction time without compromising model utility. To that end, we design and evaluate a suite of preemptive exclusion oracles leveraging model-confidence, exact or approximate sample signature, and learning-based exclusion of member data points. To be practical, MIAShield splits a training data into disjoint subsets and trains each subset to build an ensemble of models. The disjointedness of subsets ensures that a target sample belongs to only one subset, which isolates the sample to facilitate the preemptive exclusion goal. We evaluate MIAShield on three benchmark image classification datasets. We show that MIAShield effectively mitigates membership inference (near random guess) for a wide range of MIAs, achieves far better privacy-utility trade-off compared with state-of-the-art defenses, and remains resilient against an adaptive adversary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源