论文标题

部分可观测时空混沌系统的无模型预测

Location problems with cutoff

论文作者

Müller, Raoul, Schöbel, Anita, Schuhmacher, Dominic

论文摘要

在本文中,我们研究了Weber问题的广义版本,该问题是找到一个将其距离总和最小化到有限数量给定点的点。在我们的设置中,这些距离可能是$ cut $ $ $ $ $ $ $ $ $ C $ c> 0 $,我们允许以固定成本$ c'$进行$ empty $ solution。我们分析了这些问题可以减少到更简单的韦伯问题,以及何时必须解决临界值更复杂的问题。此外,我们将[Drezner等,1991,$ $ $ $ SCICANE $ 25(3),183--187]的算法进行改编,在某些情况下,这些设置能够大大减少模拟研究中所证明的计算时间。还研究了对截止值的敏感性,这使我们能够提供一种算法,该算法可以在所有$ c> 0 $上有效地同时解决问题。

In this paper we study a generalized version of the Weber problem of finding a point that minimizes the sum of its distances to a finite number of given points. In our setting these distances may be $cut$ $off$ at a given value $C > 0$, and we allow for the option of an $empty$ solution at a fixed cost $C'$. We analyze under which circumstances these problems can be reduced to the simpler Weber problem, and also when we definitely have to solve the more complex problem with cutoff. We furthermore present adaptions of the algorithm of [Drezner et al., 1991, $Transportation$ $Science$ 25(3), 183--187] to our setting, which in certain situations are able to substantially reduce computation times as demonstrated in a simulation study. The sensitivity with respect to the cutoff value is also studied, which allows us to provide an algorithm that efficiently solves the problem simultaneously for all $C>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源