论文标题
2D三层异质结构中的强且可调的磁电耦合
Strong and tunable magnetoelectric coupling in 2D trilayer heterostructures
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The quest for electric-field control of nanoscale magnetic states such as skyrmions, which would impact the field of spintronics, has led to a challenging search for multiferroic materials or structures with strong magnetoelectric coupling and efficient electric-field control. Here we report a theoretical prediction that such phenomena can be realized in two-dimensional (2D) bilayer FE/PMM and trilayer FE/PMM/FE heterostructures (two-terminal and three-terminal devices), where FE is a 2D ferroelectric and PMM is a polar magnetic metal with strong spin-orbit coupling. Such a PMM has strong Dzyaloshinskii-Moriya interactions (DMI) that can generate skyrmions, while the FE can generate strong magnetoelectric coupling through polarization-polarization interactions. In trilayer heterostructures, contact to the metallic PMM layer enables multiple polarization configurations for electric-field control of skyrmions. We report density-functional-theory calculations for particular material choices that demonstrate the effectiveness of these arrangements, with the key driver being the polarization-polarization interactions between the PMM and FE layers. The present findings provide a method to achieve strong magnetoelectric coupling in the 2D limit and a new perspective for the design of related spintronics.