论文标题

通用$ \ text {gl} _n \ rtimes \!<\!σ\!\!\!$ - character品种:未分支的情况

E-Polynomials of Generic $\text{GL}_n\rtimes\!<\!σ\!>\!~$-Character Varieties: Unbranched Case

论文作者

Shu, Cheng

论文摘要

对于任何无分支的双重覆盖紧凑的Riemann表面,我们研究了在全球意义上统一的相关角色,我们称之为$ \ text {gl} _n \ rtimes \!我们在表面上介绍$ K> 0 $穿刺,并将穿刺周围的单一个限制在$ \ text {gl} _n $中,并使用$ \ text {gl} _n(q)$ \ text {gl} _n $中的通用半简单的共轭类课程。结果表示为某些对称函数的内部产物。然后,我们被带到了混合霍奇多项式的猜想公式,该公式是由(修改的)麦克唐纳(MacDonald)多项式制造的,它们的自我配对和花圈麦克唐纳(MacDonald)多项式的自我配对。

For any unbranched double covering of compact Riemann surfaces, we study the associated character varieties that are unitary in the global sense, which we call $\text{GL}_n\rtimes\!<\!σ\!>\!~$-character varieties. We introduce $k>0$ punctures on the surface, and restrict the monodromies around the punctures to generic semi-simple conjugacy classes in $\text{GL}_n$, and compute the E-polynomials of these character varieties using the character table of $\text{GL}_n(q)$. The result is expressed as the inner product of certain symmetric functions. We are then led to a conjectural formula for the mixed Hodge polynomial, which is built out of (modified) Macdonald polynomials, their self-pairings, and self-pairings of wreath Macdonald polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源