论文标题
$ c^*$ - 与Hilbert $ c^*$ - 模块上的两个预测相关的同构
$C^*$-isomorphisms associated with two projections on a Hilbert $C^*$-module
论文作者
论文摘要
本文由用于表征弗里德里奇角度的两个规范方程式的动机,研究$ c^*$ - 同构,通过引入匹配的三重和半折断的投影,与两个预测相关的同构。如果$ h $是hilbert $ c^*$ - 模块,$ p $和$ q $的三重$(p,q,h)$是匹配的。 $ c^*$ - $ \ MATHCAL {l}(H)$的$ c^*$ - 由$ \ {p-p \ wedge Q,q-p \ wedge q,q-p \ wedge q,i \} $和$ \ {p,q,q,q,q,q,q,q \ wedge q,wedge q,i \} $表示,$ i(p,p,p,h)$(p,h)$(p,h)p,事实证明,$ o(p,q,h)$的每个忠实表示$(π,x)$都可以诱导忠实的表示$(\widetildeπ,x)$ $ i(p,q,q,h)$,这样\ begin {align*} align*}&\wideTildeπ(p-p \ wedge q) &\widetildeπ(q-p \ wedge q)=π(q)-π(p)\wedgeπ(q)。 \ end {align*}当$(p,q)$是半手机的,也就是说,$ \ edline {\ Mathcal {\ Mathcal {r}(p+q)} $和$ \ overline {\ Mathcal {r}(r}(r}(2i-p-q)} $都在$ h $ h $ h $ h $ h $ h $ h $ h $ h $ h $ h中$ i(i-q,i-p,h)$通过$ \ MATHCAL {l}(H)$中的单一操作员在单位上等效。构建反例,这表明当$(p,q)$无法半手机时,情况可能并非如此。同样,构建反例,使得$(p,q)$是半火山的,而$(p,i-q)$不是半手机。还提供了一些其他示例,这些示例表明还提供了作用于希尔伯特$ c^*$ - 模块的新现象。
Motivated by two norm equations used to characterize the Friedrichs angle, this paper studies $C^*$-isomorphisms associated with two projections by introducing the matched triple and the semi-harmonious pair of projections. A triple $(P,Q,H)$ is said to be matched if $H$ is a Hilbert $C^*$-module, $P$ and $Q$ are projections on $H$ such that their infimum $P\wedge Q$ exists as an element of $\mathcal{L}(H)$, where $\mathcal{L}(H)$ denotes the set of all adjointable operators on $H$. The $C^*$-subalgebras of $\mathcal{L}(H)$ generated by elements in $\{P-P\wedge Q, Q-P\wedge Q, I\}$ and $\{P,Q,P\wedge Q,I\}$ are denoted by $i(P,Q,H)$ and $o(P,Q,H)$, respectively. It is proved that each faithful representation $(π, X)$ of $o(P,Q,H)$ can induce a faithful representation $(\widetildeπ, X)$ of $i(P,Q,H)$ such that \begin{align*}&\widetildeπ(P-P\wedge Q)=π(P)-π(P)\wedge π(Q),\\ &\widetildeπ(Q-P\wedge Q)=π(Q)-π(P)\wedge π(Q). \end{align*} When $(P,Q)$ is semi-harmonious, that is, $\overline{\mathcal{R}(P+Q)}$ and $\overline{\mathcal{R}(2I-P-Q)}$ are both orthogonally complemented in $H$, it is shown that $i(P,Q,H)$ and $i(I-Q,I-P,H)$ are unitarily equivalent via a unitary operator in $\mathcal{L}(H)$. A counterexample is constructed, which shows that the same may be not true when $(P,Q)$ fails to be semi-harmonious. Likewise, a counterexample is constructed such that $(P,Q)$ is semi-harmonious, whereas $(P,I-Q)$ is not semi-harmonious. Some additional examples indicating new phenomena of adjointable operators acting on Hilbert $C^*$-modules are also provided.