论文标题
在充满活力保守的腿系统中连接步态
Connecting Gaits in Energetically Conservative Legged Systems
论文作者
论文摘要
在这项工作中,我们介绍了一个非线性动力学观点,可以为腿部系统的充满活力保守的模型生成和连接步态。特别是,我们表明,保守步态的集合构成了步态空间中局部定义的1D子手机的连接空间。这些歧管是通过能级的无坐标参数化的。我们提出了通过使用数值延续方法,生成集合和分叉点来识别步态家庭的算法。为此,我们还介绍了数值实现的几个详细信息。最重要的是,我们为德拉斯斯矩阵建立了必要的条件,以在影响范围内保持能量。我们作品的一个重要应用是简单的腿部运动模型,通常能够以几个自由度和少量的物理参数来捕获腿部运动的复杂性。我们在具有四个自由度的单足料斗中证明了框架的功效。
In this work, we present a nonlinear dynamics perspective on generating and connecting gaits for energetically conservative models of legged systems. In particular, we show that the set of conservative gaits constitutes a connected space of locally defined 1D submanifolds in the gait space. These manifolds are coordinate-free parameterized by energy level. We present algorithms for identifying such families of gaits through the use of numerical continuation methods, generating sets and bifurcation points. To this end, we also introduce several details for the numerical implementation. Most importantly, we establish the necessary condition for the Delassus' matrix to preserve energy across impacts. An important application of our work is with simple models of legged locomotion that are often able to capture the complexity of legged locomotion with just a few degrees of freedom and a small number of physical parameters. We demonstrate the efficacy of our framework on a one-legged hopper with four degrees of freedom.