论文标题

通过半简单元素的有限产生:定量结果

Bounded Generation by semi-simple elements: quantitative results

论文作者

Corvaja, Pietro, Demeio, Julian, Rapinchuk, Andrei, Ren, Jinbo, Zannier, Umberto

论文摘要

我们证明,对于一个数字字段$ f $,集合$σ\ subset \ mathbb {a} _f^n $具有纯粹指数参数化的分布,例如,在级别的尺寸时,在最多可靠的尺寸时,由半​​简单(对数)元素限制生成的矩阵(对数(对角线)元素。结果,一个人在特征零的字段$ k $上获得了线性组$γ\ subset \ mathrm {gl} _n(k)$,并且仅当其有限地生成并且其Zariski关闭的Zariski关闭的连接组件是一个纯粹的时指数的参数。我们的结果是通过关键的不平等值获得的,涉及纯指数参数化的最小$ m $ tuplass的高度。我们证明的主要成分是Evertse加强$ S $ UNIT方程定理。

We prove that for a number field $F$, the distribution of the points of a set $Σ\subset \mathbb{A}_F^n$ with a purely exponential parametrization, for example a set of matrices boundedly generated by semi-simple (diagonalizable) elements, is of at most logarithmic size when ordered by height. As a consequence, one obtains that a linear group $Γ\subset \mathrm{GL}_n(K)$ over a field $K$ of characteristic zero admits a purely exponential parametrization if and only if it is finitely generated and the connected component of its Zariski closure is a torus. Our results are obtained via a key inequality about the heights of minimal $m$-tuples for purely exponential parametrizations. One main ingredient of our proof is Evertse's strengthening of the $S$-Unit Equation Theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源