论文标题
在schrödinger类型方程的大渐近学上,带有一般数据
On The large Time Asymptotics of Schrödinger type equations with General Data
论文作者
论文摘要
对于具有一般交互项的schrödinger方程,可能是线性或非线性,时间依赖性和包括电荷传输势,我们证明了全局溶液是由自由波和弱局部局部的渐近给出的。证明基于以新的方式构造自由通道波运算符,以及最近的作品中的进一步工具\ cite {liu-sof1,liu-sof2,sw2020}。这项工作将\ cite {liu-sof1,liu-sof2}的第一部分的结果概括为任意维度和非radial数据。
For the Schrödinger equation with a general interaction term, which may be linear or nonlinear, time dependent and including charge transfer potentials, we prove the global solutions are asymptotically given by a free wave and a weakly localized part. The proof is based on constructing in a new way the Free Channel Wave Operator, and further tools from the recent works \cite{Liu-Sof1,Liu-Sof2,SW2020}. This work generalizes the results of the first part of \cite{Liu-Sof1,Liu-Sof2} to arbitrary dimension, and non-radial data.