论文标题

在具有第三代重力波检测器的灵感二进制中子星中区分动态潮汐的前景

Prospects for distinguishing dynamical tides in inspiralling binary neutron stars with third generation gravitational-wave detectors

论文作者

Williams, Natalie, Pratten, Geraint, Schmidt, Patricia

论文摘要

来自二进制中子恒星合并的重力波(GW)观察的潮汐作用有可能探测超密集的物质,并阐明了中子恒星状态未知的核方程。灵感中子恒星二进制中的潮汐效应与几百Hz的GW频率相关,并且需要具有出色的高频灵敏度的检测器。第三代GW探测器(例如爱因斯坦望远镜或宇宙探险家)在这种高频制度中将特别敏感,从而使我们能够探究超越绝热近似的潮汐。在这里,我们评估是否可以从中子恒星灵感来测量动态潮汐。我们发现,动态潮汐的可测量性在很大程度上取决于中子星质量和状态方程。对于10,000个灵感二进制中子星的半真实人群,我们保守地估计,平均$ \ Mathcal {o}(50)$ binaries将具有可衡量的动力潮。由于动态潮汐不仅以恒星的潮汐变形性,而且还取决于其基本($ f $ - )模式频率的特征,它们提出了探测高阶潮汐效应和测试与准宇宙关系的一致性的可能性。对于第三代检测器网络中类似于GW170817的信号,我们发现可以将恒星的$ f $模式频率测量到几百Hz以内。

Tidal effects in gravitational-wave (GW) observations from binary neutron star mergers have the potential to probe ultra-dense matter and shed light on the unknown nuclear equation of state of neutron stars. Tidal effects in inspiralling neutron star binaries become relevant at GW frequencies of a few hundred Hz and require detectors with exquisite high-frequency sensitivity. Third generation GW detectors such as the Einstein Telescope or Cosmic Explorer will be particularly sensitive in this high-frequency regime, allowing us to probe neutron star tides beyond the adiabatic approximation. Here we assess whether dynamical tides can be measured from a neutron star inspiral. We find that the measurability of dynamical tides depends strongly on the neutron star mass and equation of state. For a semi-realistic population of 10,000 inspiralling binary neutron stars, we conservatively estimate that on average $\mathcal{O}(50)$ binaries will have measurable dynamical tides. As dynamical tides are characterised not only by the star's tidal deformability but also by its fundamental ($f$-) mode frequency, they present a possibility of probing higher-order tidal effects and test consistency with quasi-universal relations. For a GW170817-like signal in a third generation detector network, we find that the stars' $f$-mode frequencies can be measured to within a few hundred Hz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源