论文标题

用空间复杂性在固液界面上进行电动双层建模

Modeling of electric double layer at solid-liquid interface with spatial complexity

论文作者

Chua, Cherq, Kee, Chun Yun, Ang, L. K., Ang, Yee Sin

论文摘要

当电极与电解质溶液接触时形成电气双层(EDL),并广泛用于生物物理学,电化学,聚合物溶液和储能。 Poisson-Boltzmann(PB)耦合方程提供了建模EDL的电势和电荷分布的基础框架。在这项工作中,基于分数演算,我们通过引入一个惊人的参数$ d $(值在0到1之间)来重新重新制定PB方程(具有和无空间效应),以说明由于EDL中的杂质而引起的空间复杂性。研究了不同$ D $的电势和离子电荷分布。在$ d $ = 1时,该模型恢复了理想EDL的经典发现。电势在$ d <$ 1的情况下缓慢衰减,因此表明在存在空间复杂性的情况下,在固定表面电位下的饱和层更宽。此处开发的分数空间广义模型提供了一种有用的工具来说明空间复杂性效应,这些效应未在经典的全维模型中捕获。

Electrical double layer (EDL) is formed when an electrode is in contact with an electrolyte solution, and is widely used in biophysics, electrochemistry, polymer solution and energy storage. Poisson-Boltzmann (PB) coupled equations provides the foundational framework for modeling electrical potential and charge distribution at EDL. In this work, based on fractional calculus, we reformulate the PB equations (with and without steric effects) by introducing a phenomenal parameter $D$ (with a value between 0 and 1) to account for the spatial complexity due to impurities in EDL. The electrical potential and ion charge distribution for different $D$ are investigated. At $D$ = 1, the model recover the classical findings of ideal EDL. The electrical potential decays slowly at $D <$1, thus suggesting a wider region of saturated layer under fixed surface potential in the presence of spatial complexity. The fractional-space generalized model developed here provides a useful tool to account for spatial complexity effects which are not captured in the classic full-dimensional models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源