论文标题

数据中心网络的适应性和不可知流计划方法

An Adaptable and Agnostic Flow Scheduling Approach for Data Center Networks

论文作者

Gutiérrez, Sergio Armando, Botero, Juan Felipe, Branch, John Willian

论文摘要

云应用程序已重塑了Internet的服务模型和基础架构。搜索引擎,社交网络,内容交付以及零售以及电子商务网站属于这组应用程序。这些应用程序运行的数据中心体系结构中的一个重要元素是通信基础架构,通常称为数据中心网络(DCN)。 DCN必须解决的一个关键挑战是处理云应用程序的流量,由于其属性与其他Internet应用程序的流量基本不同。为了提高应用程序的响应能力和吞吐量,DCN应该能够优先考虑长流(几个KB)(几个MB)(几个MB)。但是,鉴于流量呈现的时间和空间变化,有关流量大小的信息不可提前提供以计划流程计划。在本文中,我们提出了一种适应性的机制,称为适应性的工作负载 - 不合时宜的流程计划(AWAFS)。这是一种适应性的方法,可以以不可知论的方式调整DCN转发设备的调度配置。这种不可知的调整有助于减少这些短流量的流量完成时间(FCT),约占云应用程序处理的交通的85%。我们基于模拟的评估结果表明,与现有最佳现有的不可自适应解决方案相比,AWAF可以将短流量的平均FCT在16.9%和45.2%之间降低,而不会引起长流量的饥饿。确实,它可以为长流提供高达39%的改进。此外,在网络中存在的流量高的情况下,AWAF可以改善短流量的FCT,平均FCT的FCT高达5%,而尾巴FCT则减少了15%。

Cloud applications have reshaped the model of services and infrastructure of the Internet. Search engines, social networks, content delivery and retail and e-commerce sites belong to this group of applications. An important element in the architecture of data centers where these applications run is the communication infrastructure, commonly known as data center networks (DCNs). A critical challenge DCNs have to address is the processing of the traffic of cloud applications, which due to its properties is essentially different to the traffic of other Internet applications. In order to improve the responsiveness and throughput of applications, DCNs should be able to prioritize short flows (a few KB) over long flows (several MB). However, given the time and space variations the traffic presents, the information about flow sizes is not available in advance in order to plan the flow scheduling. In this paper, we present an adaptable mechanism called Adaptable Workload-Agnostic Flow Scheduling (AWAFS). It is an adaptable approach that can adjust in an agnostic way the scheduling configuration of DCN forwarding devices. This agnostic adjustment contributes to reduce the Flow Completion Time (FCT) of those short flows, representing around 85% of the traffic handled by cloud applications. Our evaluation results based on simulation show that AWAFS can reduce the average FCT of short flows between 16.9% and 45.2% when compared to the best existing agnostic non-adaptable solution, without inducing starvation on long flows. Indeed, it can provide improvements as high as 39% for long flows. Additionally, AWAFS can improve the FCT for short flows in scenarios with high heterogeneity in the traffic present in the network, with a reduction up to 5% for the average FCT and 15% for the tail FCT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源