论文标题
量子训练拆分操作员KSL(TT-SOKSL)用于量子动力学模拟的方法
Tensor-Train Split Operator KSL (TT-SOKSL) Method for Quantum Dynamics Simulations
论文作者
论文摘要
量子反应动力学的数值精确模拟,包括激发电子状态中的非绝热作用,对于获得对超快化学反应性和分子光谱的严格解释的基本见解至关重要。在这里,我们介绍了张量 - 训练拆分操作员KSL(TT-SOKSL)方法,以量量tensor-Train(TT)/矩阵乘积状态(MPS)表示中的量子模拟。 TT-SOKSL使用时间进化运算符的小跑者扩展将量子状态传播为张量列,如张量 - 训练式拆分操纵器傅立叶变换(TT-SOFT)方法。但是,使用等级自适应TT-KSL方案应用了Trotter扩展的指数运算符,而不是使用TT-Soft中的缩放和平方方法。我们证明了TT-SOKSL的准确性和效率应用于视紫红质中视网膜发色团光异构化的模拟,包括在势能表面的圆锥形交集处的非绝热动力学。量子进化是通过根据两态25维模型的哈密顿量来演变的时间依赖的波袋来描述量子进化的。我们发现,相对于TT-SOKSL的收敛速度比TT-Soft相对于张量训练表示的最大内存需求,并更好地保留了时间不断发展的状态的规范。与基于TT-KSL方法的相应仿真相比,TT-SOKSL具有避免通过利用多维张量火车傅立叶变换的线性缩放来构建矩阵乘积状态laplacian的优势。
Numerically exact simulations of quantum reaction dynamics, including non-adiabatic effects in excited electronic states, are essential to gain fundamental insights into ultrafast chemical reactivity and rigorous interpretations of molecular spectroscopy. Here, we introduce the tensor-train split-operator KSL (TT-SOKSL) method for quantum simulations in tensor-train (TT)/matrix product state (MPS) representations. TT-SOKSL propagates the quantum state as a tensor train using the Trotter expansion of the time-evolution operator, as in the tensor-train split-operator Fourier transform (TT-SOFT) method. However, the exponential operators of the Trotter expansion are applied using a rank adaptive TT-KSL scheme instead of using the scaling and squaring approach as in TT-SOFT. We demonstrate the accuracy and efficiency of TT-SOKSL as applied to simulations of the photoisomerization of the retinal chromophore in rhodopsin, including non-adiabatic dynamics at a conical intersection of potential energy surfaces. The quantum evolution is described in full dimensionality by a time-dependent wavepacket evolving according to a two-state 25-dimensional model Hamiltonian. We find that TT-SOKSL converges faster than TT-SOFT with respect to the maximally allowed memory requirement of the tensor-train representation and better preserves the norm of the time-evolving state. When compared to the corresponding simulations based on the TT-KSL method, TT-SOKSL has the advantage of avoiding the need of constructing the matrix product state Laplacian by exploiting the linear scaling of multidimensional tensor train Fourier transforms.