论文标题

二次重力中的混乱

Chaos in Quadratic Gravity

论文作者

Deich, Alexander, Cárdenas-Avendaño, Alejandro, Yunes, Nicolas

论文摘要

尽管Ligo和处女座最近的重力波观察可以测试极端重力制度中的一般相对性,但这些观察结果仍然对这些仪器敏感性曲线以外的大量现象视而不见。未来的重力波探测器(例如Lisa)将能够探测更长的持续时间和低频事件。特别是,当一个小的紧凑型物体落入超级质量的黑洞时,丽莎将能够表征极端质量比率灵感的非线性动力学。在本文中,我们研究了在两个二次重力理论中旋转黑洞周围的测试颗粒的运动:标量高斯 - 骨网和动态的Chern-Simons重力。我们表明,在这些理论中旋转黑洞旋转的大地轨迹可能不会具有第四个运动常数。特别是,我们表明,轨道相空间的庞加莱段具有混乱的特征,这些特征会影响小型紧凑物体的灵感,这些特征是这些理论中的超质量黑洞。然而,这些混沌特征的特征大小很小,它们在参数空间中的位置非常接近超级质量黑洞的事件范围。因此,与丽莎混乱的特征的检测充其量可能是非常具有挑战性的。

While recent gravitational wave observations by LIGO and Virgo allow for tests of general relativity in the extreme gravity regime, these observations are still blind to a large swath of phenomena outside these instruments' sensitivity curves. Future gravitational-wave detectors, such as LISA, will enable probes of longer-duration and lower-frequency events. In particular, LISA will enable the characterization of the non-linear dynamics of extreme mass-ratio inspirals, when a small compact object falls into a supermassive black hole. In this paper, we study the motion of test particles around spinning black holes in two quadratic gravity theories: scalar Gauss-Bonnet and dynamical Chern-Simons gravity. We show that geodesic trajectories around rotating black holes in these theories are likely to not have a fourth constant of the motion. In particular, we show that Poincaré sections of the orbital phase space present chaotic features that will affect the inspiral of small compact objects into supermassive black holes in these theories. Nevertheless, the characteristic size of these chaotic features is tiny and their location in parameter space is very close to the event horizon of the supermassive black hole. Therefore, the detection of such chaotic features with LISA is likely very challenging, at best.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源