论文标题

深层贝叶斯神经网络,用于心律不齐分类,并拒绝ECG录音

A Deep Bayesian Neural Network for Cardiac Arrhythmia Classification with Rejection from ECG Recordings

论文作者

Zhang, Wenrui, Di, Xinxin, Wei, Guodong, Geng, Shijia, Fu, Zhaoji, Hong, Shenda

论文摘要

随着基于深度学习的方法的发展,心电图(ECG)的自动分类最近引起了很多关注。尽管深度神经网络的有效性令人鼓舞,但输出提供的信息缺乏信息限制了临床医生的重新检查。如果不确定性估计与分类结果有关,心脏病学家可以更加关注“不确定”病例。我们的研究旨在根据数据不确定性和模型不确定性对ECG进行拒绝分类。我们在现实世界中的12铅ECG数据集上执行实验。首先,我们根据贝叶斯神经网络使用蒙特卡洛辍学预测来估计不确定性。然后,我们在给定阈值下接受不确定性的预测,并为临床医生提供“不确定”的病例。此外,我们使用不同的阈值执行模拟实验。最后,在临床医生的帮助下,我们进行了案例研究,以解释较大的不确定性结果和不正确的不确定性预测的结果。结果表明,正确的预测更有可能具有较小的不确定性,并且随着接受率降低(即更多的拒绝),公认预测的性能会提高。案例研究还有助于解释为什么拒绝可以改善绩效。我们的研究有助于神经网络产生更准确的结果,并提供有关不确定性的信息,以更好地帮助临床医生参与诊断过程。它还可以在临床实施中实现基于深度学习的心电图解释。

With the development of deep learning-based methods, automated classification of electrocardiograms (ECGs) has recently gained much attention. Although the effectiveness of deep neural networks has been encouraging, the lack of information given by the outputs restricts clinicians' reexamination. If the uncertainty estimation comes along with the classification results, cardiologists can pay more attention to "uncertain" cases. Our study aims to classify ECGs with rejection based on data uncertainty and model uncertainty. We perform experiments on a real-world 12-lead ECG dataset. First, we estimate uncertainties using the Monte Carlo dropout for each classification prediction, based on our Bayesian neural network. Then, we accept predictions with uncertainty under a given threshold and provide "uncertain" cases for clinicians. Furthermore, we perform a simulation experiment using varying thresholds. Finally, with the help of a clinician, we conduct case studies to explain the results of large uncertainties and incorrect predictions with small uncertainties. The results show that correct predictions are more likely to have smaller uncertainties, and the performance on accepted predictions improves as the accepting ratio decreases (i.e. more rejections). Case studies also help explain why rejection can improve the performance. Our study helps neural networks produce more accurate results and provide information on uncertainties to better assist clinicians in the diagnosis process. It can also enable deep-learning-based ECG interpretation in clinical implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源