论文标题
对无人机上的对象检测管道的全面分析
Comprehensive Analysis of the Object Detection Pipeline on UAVs
论文作者
论文摘要
对象检测管道包括一个捕获场景的相机和处理这些图像的对象检测器。图像的质量直接影响对象检测器的性能。如今,许多工作重点是改善图像质量或独立改善对象检测模型,但忽略了两个子系统的联合优化的重要性。本文的目的是通过专注于优化针对对象检测器量身定制的输入图像来调整遥感方案中现有对象检测器的检测吞吐量和准确性。为了实现这一目标,我们凭经验分析了两个选择的摄像机校准参数(摄像机失真校正和伽马校正)和五个图像参数(量化,压缩,分辨率,颜色模型,其他通道)的影响。在我们的实验中,我们利用来自不同域中的三个无人机数据集,以及大小的最新对象检测器模型的混合物来提供对管道参数影响的广泛评估。最后,我们在无人机的嵌入式平台上实现了一个对象检测管道原型,并根据我们的发现为构建对象检测管道提供了最佳练习建议。我们表明,并非所有参数都对检测准确性和数据吞吐量都有平等的影响,并且通过在参数之间使用合适的折衷方案,我们能够为轻质对象检测模型实现更高的检测精度,同时保持相同的数据吞吐量。
An object detection pipeline comprises a camera that captures the scene and an object detector that processes these images. The quality of the images directly affects the performance of the object detector. Many works nowadays focus either on improving the image quality or improving the object detection models independently, but neglect the importance of joint optimization of the two subsystems. The goal of this paper is to tune the detection throughput and accuracy of existing object detectors in the remote sensing scenario by focusing on optimizing the input images tailored to the object detector. To achieve this, we empirically analyze the influence of two selected camera calibration parameters (camera distortion correction and gamma correction) and five image parameters (quantization, compression, resolution, color model, additional channels) for these applications. For our experiments, we utilize three UAV data sets from different domains and a mixture of large and small state-of-the-art object detector models to provide an extensive evaluation of the influence of the pipeline parameters. Finally, we realize an object detection pipeline prototype on an embedded platform for an UAV and give a best practice recommendation for building object detection pipelines based on our findings. We show that not all parameters have an equal impact on detection accuracy and data throughput, and that by using a suitable compromise between parameters we are able to achieve higher detection accuracy for lightweight object detection models, while keeping the same data throughput.