论文标题
了解3D语义细分面对类不平衡和OOD数据时的挑战
Understanding the Challenges When 3D Semantic Segmentation Faces Class Imbalanced and OOD Data
论文作者
论文摘要
3D语义细分(3DSS)是创建安全自动驾驶系统的重要过程。但是,3D语义分割的深度学习模型通常会遭受类不平衡问题和分布(OOD)数据的困扰。在这项研究中,我们探讨了类不平衡问题如何影响3DSS性能以及模型是否可以检测类别预测的正确性,或者数据是ID(分数)还是OOD。为了这些目的,我们使用三个代表性3DSS模型和五个信任评分方法进行了两个实验,并对每个类别进行了混乱和特征分析。此外,提出了针对3D激光雷达数据集的数据增强方法来创建基于Semantickitti和Semanticposs的新数据集,称为Augkitti。我们提出了WPRE度量和TSD,以对结果进行更深入的分析,并以深入的讨论是提案。基于实验结果,我们发现:(1)类不仅在其数据大小中不平衡,而且在每个语义类别的基本属性中也是不平衡的。 (2)类内的多样性和阶级歧义使课堂学习变得困难,并极大地限制了模型的表现,从而构成了语义和数据差距的挑战。 (3)信任分数对于与其他类别相混淆的类的类别不可靠。对于3DSS模型,这些错误分类的ID类和OOD也可能会得到很高的信任分数,使3DSS预测不可靠,并导致判断3DSS的挑战。所有这些结果都指向了一些研究方向,以提高用于现实世界应用的3DSS模型的性能和可靠性。
3D semantic segmentation (3DSS) is an essential process in the creation of a safe autonomous driving system. However, deep learning models for 3D semantic segmentation often suffer from the class imbalance problem and out-of-distribution (OOD) data. In this study, we explore how the class imbalance problem affects 3DSS performance and whether the model can detect the category prediction correctness, or whether data is ID (in-distribution) or OOD. For these purposes, we conduct two experiments using three representative 3DSS models and five trust scoring methods, and conduct both a confusion and feature analysis of each class. Furthermore, a data augmentation method for the 3D LiDAR dataset is proposed to create a new dataset based on SemanticKITTI and SemanticPOSS, called AugKITTI. We propose the wPre metric and TSD for a more in-depth analysis of the results, and follow are proposals with an insightful discussion. Based on the experimental results, we find that: (1) the classes are not only imbalanced in their data size but also in the basic properties of each semantic category. (2) The intraclass diversity and interclass ambiguity make class learning difficult and greatly limit the models' performance, creating the challenges of semantic and data gaps. (3) The trust scores are unreliable for classes whose features are confused with other classes. For 3DSS models, those misclassified ID classes and OODs may also be given high trust scores, making the 3DSS predictions unreliable, and leading to the challenges in judging 3DSS result trustworthiness. All of these outcomes point to several research directions for improving the performance and reliability of the 3DSS models used for real-world applications.