论文标题
强烈各向异性电子和磁性结构中的氧化二氯酸盐RUOCL $ _2 $和OSOCL $ _2 $
Strongly anisotropic electronic and magnetic structures in oxide dichlorides RuOCl$_2$ and OsOCl$_2$
论文作者
论文摘要
在这里,使用密度函数理论和密度矩阵重新归一化组方法,我们研究了ruocl $ _2 $和OSOCL $ _2 $的电子和磁性,以及$ d^4 $电子配置。与以前使用voi $ _2 $的研究不同,这些系统具有$ 4D^4 $或$ 5D^4 $的系统,沿$ A $ axis不显示铁电不稳定。由于Ruocl $ _2 $和OSOCL $ _2 $的完全占上风的$ d_ {xy} $轨道,PEIERLS的不稳定性失真沿$ b $轴消失,导致未经证实的I $ {\ rm mmm} $ phase(第71号)。此外,我们观察到沿$ a $轴的强烈各向异性电子和磁性结构。大晶体场分裂能量($ d_ {xz/yz} $和$ d_ {xy} $ orbitals)和在最近的neighbor ru和Os原子之间进行大型跳跃,在$ m $ ocl $ _2 $ _2 $($ m $ = ru或os)中抑制了旋转轨道效应,并带有电子密度$ n = 4 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。此外,我们发现沿$ m $ -o链方向($ a $轴)的交错的抗铁磁序,而沿$ b $轴的磁耦合很弱。基于第一原理计算的Wannier功能,我们计算了$ t_ {2g} $ orbitals的相关跳跃幅度和晶体场分裂能量,以构建$ m $ -o链的多轨原子模型。与DFT计算一致,交错的AFM带有$ \ uparrow $ - $ \ downarrow $ - $ \ uparrow $ - $ \ uparrow $ - $ \ downarrow $旋转结构在我们的DMRG计算中占主导地位,与DFT计算一致。
Here, using density functional theory and density matrix renormalization group methods, we investigate the electronic and magnetic properties of RuOCl$_2$ and OsOCl$_2$ with $d^4$ electronic configurations. Different from a previous study using VOI$_2$ with $d^1$ configuration, these systems with $4d^4$ or $5d^4$ do not exhibit a ferroelectric instability along the $a$-axis. Due to the fully-occupied $d_{xy}$ orbital in RuOCl$_2$ and OsOCl$_2$, the Peierls instability distortion disappears along the $b$-axis, leading to an undistorted I${\rm mmm}$ phase (No. 71). Furthermore, we observe strongly anisotropic electronic and magnetic structures along the $a$-axis. The large crystal-field splitting energy (between $d_{xz/yz}$ and $d_{xy}$ orbitals) and large hopping between nearest-neighbor Ru and Os atoms suppresses the spin-orbital effect in $M$OCl$_2$ ($M$ = Ru or Os) with electronic density $n = 4$, resulting in a spin-1 system instead of a $J = 0$ singlet ground state. Moreover, we find staggered antiferromagnetic order with $π$ wavevector along the $M$-O chain direction ($a$-axis) while the magnetic coupling along the $b$-axis is weak. Based on Wannier functions from first-principles calculations, we calculated the relevant hopping amplitudes and crystal-field splitting energies of the $t_{2g}$ orbitals for the Os atoms to construct a multi-orbital Hubbard model for the $M$-O chains. Staggered AFM with $\uparrow$-$\downarrow$-$\uparrow$-$\downarrow$ spin structure dominates in our DMRG calculations, in agreement with DFT calculations.