论文标题

随机神经网络量子状态的纠缠特征

Entanglement Features of Random Neural Network Quantum States

论文作者

Sun, Xiao-Qi, Nebabu, Tamra, Han, Xizhi, Flynn, Michael O., Qi, Xiao-Liang

论文摘要

受限的玻尔兹曼机器(RBMS)是一类神经网络,已成功用作量子多体波函数的变异ansatz。在这里,我们开发了一种分析方法来研究由具有独立和相同分布的复杂高斯重量的随机RBM编码的量子多体旋转状态。通过将集合平均数量的计算映射到统计力学模型中,我们能够在热力学极限中研究RBM集合的参数空间。我们通过不同的RBM参数发现了定性不同的波函数,这对应于等效统计力学模型中的不同阶段。值得注意的是,在某种方向上,典型的RBM状态在热力学极限中具有接近最大的纠缠熵,类似于HAAR随机状态。但是,这些状态通常在ISING的基础上表现出非迫使行为,并且不会形成量子状态设计,从而使其与HAAR随机状态有区别。

Restricted Boltzmann machines (RBMs) are a class of neural networks that have been successfully employed as a variational ansatz for quantum many-body wave functions. Here, we develop an analytic method to study quantum many-body spin states encoded by random RBMs with independent and identically distributed complex Gaussian weights. By mapping the computation of ensemble-averaged quantities to statistical mechanics models, we are able to investigate the parameter space of the RBM ensemble in the thermodynamic limit. We discover qualitatively distinct wave functions by varying RBM parameters, which correspond to distinct phases in the equivalent statistical mechanics model. Notably, there is a regime in which the typical RBM states have near-maximal entanglement entropy in the thermodynamic limit, similar to that of Haar-random states. However, these states generically exhibit nonergodic behavior in the Ising basis, and do not form quantum state designs, making them distinguishable from Haar-random states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源