论文标题
学习的端到端高分辨率无透镜纤维成像用于术中实时癌症诊断
Learned end-to-end high-resolution lensless fiber imaging toward intraoperative real-time cancer diagnosis
论文作者
论文摘要
对于临床实践中的最小侵入性诊断是必不可少的。为了对手术干预进行光学钥匙孔监测,高分辨率纤维内窥镜成像被认为是非常有前途的,尤其是与无标签的成像技术结合使用,可以在体内诊断中实现。但是,相干纤维束(CFB)的固有的蜂窝阵利会减少分辨率并限制临床应用。我们提出了一种端到端无透镜纤维成像方案,用于术中实时癌症诊断。该框架包括分辨率增强和分类网络,这些网络使用单发纤维束图像提供高分辨率图像和肿瘤诊断结果。训练有素的分辨率增强网络不仅恢复了超出CFB物理局限性的高分辨率特征,而且还有助于提高肿瘤识别率。特别是对于胶质母细胞瘤,分辨率增强网络有助于将分类准确性从90.8%提高到95.6%。这项新型技术可以通过无透镜的纤维内窥镜进行组织学实时成像,并有望在临床中快速和最小的术中诊断。
Endomicroscopy is indispensable for minimally invasive diagnostics in clinical practice. For optical keyhole monitoring of surgical interventions, high-resolution fiber endoscopic imaging is considered to be very promising, especially in combination with label-free imaging techniques to realize in vivo diagnosis. However, the inherent honeycomb-artifacts of coherent fiber bundles (CFB) reduce the resolution and limit the clinical applications. We propose an end-to-end lensless fiber imaging scheme toward intraoperative real-time cancer diagnosis. The framework includes resolution enhancement and classification networks that use single-shot fiber bundle images to provide both high-resolution images and tumor diagnosis result. The well-trained resolution enhancement network not only recovers high-resolution features beyond the physical limitations of CFB, but also helps improving tumor recognition rate. Especially for glioblastoma, the resolution enhancement network helps increasing the classification accuracy from 90.8% to 95.6%. The novel technique can enable histological real-time imaging through lensless fiber endoscopy and is promising for rapid and minimal-invasive intraoperative diagnosis in clinics.