论文标题
通过隐式后验模型解决标签不确定性
Resolving label uncertainty with implicit posterior models
论文作者
论文摘要
我们提出了一种在数据样本集合中共同推断标签的方法,其中每个样本都包含一个观察结果和对标签的先前信念。通过隐式假设存在一种生成模型,可区分预测因子是后部,我们得出了一个训练目标,该目标允许在弱信念下学习。该配方统一了各种机器学习设置;弱信念可以以嘈杂或不完整的标签形式出现,辅助输入的不同预测机制给出的可能性,或反映出有关当前问题结构的知识的常识先验。我们证明了有关各种问题的算法:通过负面培训示例进行分类,从排名中学习,弱和自我监督的空中影像细分,视频帧的共段以及粗糙的监督文本分类。
We propose a method for jointly inferring labels across a collection of data samples, where each sample consists of an observation and a prior belief about the label. By implicitly assuming the existence of a generative model for which a differentiable predictor is the posterior, we derive a training objective that allows learning under weak beliefs. This formulation unifies various machine learning settings; the weak beliefs can come in the form of noisy or incomplete labels, likelihoods given by a different prediction mechanism on auxiliary input, or common-sense priors reflecting knowledge about the structure of the problem at hand. We demonstrate the proposed algorithms on diverse problems: classification with negative training examples, learning from rankings, weakly and self-supervised aerial imagery segmentation, co-segmentation of video frames, and coarsely supervised text classification.