论文标题

间质电子诱导的拓扑分子晶体

Interstitial-Electron-Induced Topological Molecular Crystals

论文作者

Yu, Tonghua, Arita, Ryotaro, Hirayama, Motoaki

论文摘要

与拓扑材料相比,拓扑阶段通常在分子固体中无法到达,这是具有较大间隙的弱分散能带的特征。但是,在这项工作中,我们建议非平凡的电子拓扑结构可能会普遍存在,这些分子晶体中包含间质电子状态的一类分子晶体,这些层的带很容易与分子轨道的晶体倒置。我们提供指南,以寻求这种间隙电子诱导的拓扑分子晶体,尤其是在拓扑绝缘状态。它们表现出各种特殊品质,这是由分子晶体,间质电子和拓扑性质的固有相互作用所带来的:(1)它们可以沿多个方向构成可切除的表面,具有明显的拓扑边界状态,没有悬挂键的拓扑边界状态。 (2)对中等机械扰动的强烈反应,从而在相对较低的压力下发生拓扑相变。 (3)固有的高效率热电学由非抛物线带结构(高热电器),高移动的间隙电子(高电导率)和软声子(小晶格导热率)共同贡献。 (4)由于主动间隙电子而导致的超低工作函数。我们利用第一原理计算来证明这些属性的代表性候选人k $ _4 $ ba $ _2 $ [SNBI $ _4 $]。我们的工作提出了一种在块状分子系统中实现拓扑阶段的途径,这可能会推进拓扑和分子材料之间的跨学科研究。

Topological phases usually are unreachable in molecular solids, which are characteristic of weakly dispersed energy bands with a large gap, in contrast to topological materials. In this work, however, we propose that nontrivial electronic topology may ubiquitously emerge in a class of molecular crystals that contain interstitial electronic states, the bands of which are prone to be inverted with those of molecular orbitals. We provide guidelines hunt for such interstitial-electron-induced topological molecular crystals, especially in the topological insulating state. They exhibit a variety of exceptional qualities, as brought about by the intrinsic interplay of molecular crystals, interstitial electrons, and topological nature: (1) They may host cleavable surfaces along multiple orientations, with pronounced topological boundary states free from dangling bonds. (2) Strong response to moderate mechanical perturbations, whereby topological phase transition would occur under relatively low pressure. (3) Inherent high-efficiency thermoelectricity as jointly contributed by the non-parabolic band structure (therewith high thermopower), highly mobile interstitial electrons (high electrical conductivity), and soft phonons (small lattice thermal conductivity). (4) Ultralow work function owing to the active interstitial electrons. We utilize first-principles calculations to demonstrate these properties with the representative candidate K$_4$Ba$_2$[SnBi$_4$]. Our work suggests a pathway of realizing topological phases in bulk molecular systems, which may advance the interdisciplinary research between topological and molecular materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源