论文标题

如何学习和学习:机器学习的模式

How and what to learn:The modes of machine learning

论文作者

Feng, Sihan, Zhang, Yong, Wang, Fuming, Zhao, Hong

论文摘要

尽管他们取得了巨大的成功,但由于缺乏可解释性,神经网络仍然是黑盒子。在这里,我们提出了一种新的分析方法,即重量途径分析(WPA),以使其透明。我们将重量从输入神经元纵向连接到输出神经元或简单的体重途径的途径中,是理解神经网络的基本单元,并将神经网络分解为此类重量途径的一系列子网络。提出了子网的可视化方案,该方案给出了网络的纵向观点,例如X光片,使网络的内部结构可见。参数调整的影响或对网络的结构变化的影响可以通过此类X光片可视化。为子网络建立了特征图,以表征输入样品对每个输出神经元的影响的增强或抑制。使用WPA,我们发现神经网络存储并以全息方式使用信息,也就是说,子网编码在相干结构中的所有训练样本,因此只有通过研究重量途径才能探索存储在网络中的样本。此外,使用WPA,我们揭示了神经网络的基本学习模式:线性学习模式和非线性学习模式。前者提取了可分离的特征,而后者提取了线性不可分割的特征。隐藏的层神经元自组织分为不同的班级,以建立学习模式并实现培训目标。学习模式的发现为我们提供了理解机器学习的一些基本问题的理论基础,例如学习过程的动态,线性和非线性神经元的作用以及网络宽度和深度的作用。

Despite their great success, neural networks still remain as black-boxes due to the lack of interpretability. Here we propose a new analyzing method, namely the weight pathway analysis (WPA), to make them transparent. We consider weights in pathways that link neurons longitudinally from input neurons to output neurons, or simply weight pathways, as the basic units for understanding a neural network, and decompose a neural network into a series of subnetworks of such weight pathways. A visualization scheme of the subnetworks is presented that gives longitudinal perspectives of the network like radiographs, making the internal structures of the network visible. Impacts of parameter adjustments or structural changes to the network can be visualized via such radiographs. Characteristic maps are established for subnetworks to characterize the enhancement or suppression of the influence of input samples on each output neuron. Using WPA, we discover that neural network store and utilize information in a holographic way, that is, subnetworks encode all training samples in a coherent structure and thus only by investigating the weight pathways can one explore samples stored in the network. Furthermore, with WPA, we reveal fundamental learning modes of a neural network: the linear learning mode and the nonlinear learning mode. The former extracts linearly separable features while the latter extracts linearly inseparable features. The hidden-layer neurons self-organize into different classes for establishing learning modes and for reaching the training goal. The finding of learning modes provides us the theoretical ground for understanding some of the fundamental problems of machine learning, such as the dynamics of learning process, the role of linear and nonlinear neurons, as well as the role of network width and depth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源