论文标题

单次超高分辨率生成对抗网络,在单个GPU上合成16K图像

One-shot Ultra-high-Resolution Generative Adversarial Network That Synthesizes 16K Images On A Single GPU

论文作者

Oh, Junseok, Yoon, Donghwee, Kim, Injung

论文摘要

我们提出了一个一次性超高分辨率生成对抗网络(我们的GAN)框架,该框架从单个训练图像中生成非重复效率16K(16,384 x 8,640)图像,并且可以在单个消费者GPU上训练。我们的gan生成了一个初始图像,该图像在视觉上是合理的,并且在低分辨率下形状变化,然后通过通过超分辨率添加细节来逐渐增加分辨率。由于我们的gan从真实的超高分辨率(UHR)图像中学习,因此它可以通过良好的细节和远距离连贯性合成大型形状,这对于依靠从相对较小的图像中学到的贴片分布的常规生成模型很难实现。我们的gan可以通过12.5 GB的GPU存储器和4K图像合成高质量的16K图像,仅使用4.29 GB合成,因为它通过无缝的亚区域的超级分辨率综合了UHR图像。此外,我们的gan通过应用垂直位置卷积来提高视觉连贯性,同时保持多样性。在ST4K上的实验并提高数据集中,与基线一弹性合成模型相比,我们的gan表现出改善的保真度,视觉相干性和多样性。据我们所知,我们的gan是第一个单发图像合成器,该图像合成器在单个消费者GPU上生成非重生的UHR图像。合成的图像样品在https://our-gan.github.io中提供。

We propose a one-shot ultra-high-resolution generative adversarial network (OUR-GAN) framework that generates non-repetitive 16K (16, 384 x 8, 640) images from a single training image and is trainable on a single consumer GPU. OUR-GAN generates an initial image that is visually plausible and varied in shape at low resolution, and then gradually increases the resolution by adding detail through super-resolution. Since OUR-GAN learns from a real ultra-high-resolution (UHR) image, it can synthesize large shapes with fine details and long-range coherence, which is difficult to achieve with conventional generative models that rely on the patch distribution learned from relatively small images. OUR-GAN can synthesize high-quality 16K images with 12.5 GB of GPU memory and 4K images with only 4.29 GB as it synthesizes a UHR image part by part through seamless subregion-wise super-resolution. Additionally, OUR-GAN improves visual coherence while maintaining diversity by applying vertical positional convolution. In experiments on the ST4K and RAISE datasets, OUR-GAN exhibited improved fidelity, visual coherency, and diversity compared with the baseline one-shot synthesis models. To the best of our knowledge, OUR-GAN is the first one-shot image synthesizer that generates non-repetitive UHR images on a single consumer GPU. The synthesized image samples are presented at https://our-gan.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源