论文标题
在有限温度下的抗铁磁和顺磁性相中自旋,晶格和自旋晶格动力学的密度功能描述
Density Functional description of spin, lattice, and spin-lattice dynamics in antiferromagnetic and paramagnetic phases at finite temperatures
论文作者
论文摘要
描述化合物的抗磁性或顺磁性相的(a)电子和磁性(EMP)通常需要在给定温度下的(b)此类相的自旋构型和晶格结构(SCLS)的知识。实际上,研究(a)和(b)之间的耦合在磁性理论中是一个杰出的挑战。物质电子阶段的传统方法通常着重于解决EMP关于SCL的问题作为观众的自由度(DOF)。然而,人们已经认识到,化合物的EMP通常对SCLS的变化进行自一响应,反之亦然。我们在这里构建了一种实用的,密度功能理论(DFT)的方法,该方法提供了SCL作为温度的函数,涉及不同磁相的自旋,晶格和自旋晶格动力学的描述。我们区分了三个级别的动力学:(i)通过非colinear Heisenberg Monte-Carlo处理的自旋DOF的动力学,并具有DFT的交换能量,(ii)通过在模拟的温度和(III)和(III)的Clication和III c的动力下,通过Ab i始于分子动力学处理的晶格DOF(AIMD)的动力学。 Landau-Lifshitz-Gilbert旋转动力学与AIMD结合在一起。这三个级别中每个级别的此类SCL用作DFT超级电池计算的输入,在每个温度下提供EMP。该序列的结果包括电子带结构,带隙,状态密度以及局部矩的统计分布和短距离顺序参数,每个参数都是温度的函数。使用NIO作为测试用例,我们解决了磁绝缘体中DOF的可分离性,以最少对电子和磁性的描述,这表明将旋转动力学包含在内,并且在某种程度上,晶格动力学足以解释EMP。
Describing the (a) electronic and magnetic properties (EMP) of antiferromagnetic or paramagnetic phases of compounds generally requires the knowledge of (b) the spin configurations and lattice structure (SCLS) of such phases at a given temperature. Indeed, studying the coupling between (a) and (b) has been an outstanding challenge in the theory of magnetism. The traditional approach to electronic phases of matter has generally focused on solving the problem of EMP regarding the SCLS as a spectator degree of freedom (DOF). Yet, it has been recognized that EMP of a compound generally respond self-consistently to changes in SCLS and vice versa. We construct here a practical, density functional theory (DFT)-based approach that provides the SCLS as a function of temperature, involving the description of spin, lattice, and spin-lattice dynamics of different magnetic phases. We distinguish three Levels of dynamics: (I) dynamics of the spin DOF treated via noncollinear Heisenberg Monte-Carlo with exchange energies from DFT, (II) dynamics of the lattice DOF treated by ab initio molecular dynamics (AIMD) employing a fixed spin configuration from Level I at the simulated temperature, and (III) coupling of spin and lattice dynamics via Landau-Lifshitz-Gilbert spin dynamics combined with AIMD. Such SCLS at each of the three levels are used as inputs to DFT supercell calculations, providing the EMP at each temperature. The results of this sequence include electronic band structures, band gaps, density of states, as well as the statistical distribution of local moments and the short-range order parameters, each as a function of temperature. Using NiO as a test case, we address the separability of the DOF in magnetic insulators for a minimal description of electronic and magnetic properties, demonstrating that inclusion of spin dynamics and, to some level, lattice dynamics is enough to explain the EMP.