论文标题

在一些可实现的Metabelian $ 5 $ -Groups

On some realizable metabelian $5$-groups

论文作者

Elmouhib, Fouad, Talbi, Mohamed, Azizi, Abdelmalek

论文摘要

令$ g $为$ 5 $ - 最大级别,$γ_2(g)= [g,g] $派生的组。假设Abelianization $ g/γ_2(g)$是类型$(5,5)$,而转移$ v_ {h_1 \toγ_2(g)} $和$ v_ {h_2 \toγ_2(g)$是$ h_1 $ and $ h_1 $ and $ h_2 $ sum y s tw t tw ymaxim sum $ g g,然后,$ g $由同构阶级组完全确定。此外,对于某些字段$ k $,该组$ g $是可以实现的,这是纯Quintic领域的正常关闭。

Let $G$ be a $5$-group of maximal class and $γ_2(G) = [G, G]$ its derived group. Assume that the abelianization $G/γ_2(G)$ is of type $(5, 5)$ and the transfers $V_{H_1\to γ_2(G)}$ and $V_{H_2\to γ_2(G)}$ are trivial, where $H_1$ and $H_2$ are two maximal normal subgroups of $G$. Then $G$ is completely determined with the isomorphism class groups of maximal class. Moreover the group $G$ is realizable with some fields $k$, which is the normal closure of a pure quintic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源