论文标题
高平面上超单基因功能的希尔伯特边界价值问题
Hilbert Boundary Value Problems for Hyper Monogenic Functions on The Hyperplane
论文作者
论文摘要
本文系统地研究了超平面上超单基因函数的希尔伯特边界价值问题的问题,用于无穷大的任何整数订单的解决方案,即使在复杂平面环境中,负顺序案例也是新的。给出了明确的解决方案公式,并指定了可溶性条件。通过使用Clifford对称扩展方法来证明结果,将希尔伯特边界价值问题减少到Riemann边界价值问题。
This paper systematically studies Hilbert boundary value problems for hyper monogenic functions on the hyperplane for the solutions being of any integer orders at the infinity, where the negative order cases are new even when restricted to the complex plane context. The explicit solution formulas are given and the solvability conditions are specified. The results are proved through using the Clifford symmetric extension method to reduce Hilbert boundary value problems to Riemann boundary value problems.