论文标题
部分可观测时空混沌系统的无模型预测
Coset topologies on $\mathbb{Z}$ and arithmetic applications
论文作者
论文摘要
我们提供的结构涵盖了特殊情况,许多人在文献中可以找到的整数拓扑。此外,我们对Golomb和Kirch拓扑结构的分析将它们插入了$ \ Mathbb {Z} $上的一个连接的Hausdorff拓扑家族中,从封闭的Profinite完成$ \ hat $ \ hat {\ mathbb {z}}} $中获得。我们还讨论了数字理论的各种应用。
We provide a construction which covers as special cases many of the topologies on integers one can find in the literature. Moreover, our analysis of the Golomb and Kirch topologies inserts them in a family of connected, Hausdorff topologies on $\mathbb{Z}$, obtained from closed sets of the profinite completion $\hat{\mathbb{Z}}$. We also discuss various applications to number theory.