论文标题
Meta-Rangeseg:使用多个特征聚合的LIDAR序列语义分割
Meta-RangeSeg: LiDAR Sequence Semantic Segmentation Using Multiple Feature Aggregation
论文作者
论文摘要
LIDAR传感器对于自动驾驶和智能机器人的感知系统至关重要。为了满足实际应用程序中的实时要求,有必要有效分割LiDAR扫描。以前的大多数方法将3D点云直接投影到2D球形范围图像上,以便它们可以利用有效的2D卷积操作进行图像分割。尽管取得了令人鼓舞的结果,但在球形投影中,邻里信息并不保存得很好。此外,在单个扫描分段任务中未考虑时间信息。为了解决这些问题,我们提出了一种新型的语义分割方法,用于雷达序列的LIDAR序列,其中引入了新的范围残留图像表示以捕获空间信息信息。具体而言,使用元内核来提取元特征,从而降低了2D范围图像坐标输入和3D笛卡尔坐标输出之间的不一致。有效的U-NET主链用于获得多尺度功能。此外,特征聚合模块(FAM)增强了范围通道的作用,并在不同级别上汇总特征。我们进行了广泛的实验,以对Semantickitti和Semanticposs进行绩效评估。有希望的结果表明,我们提出的元rangeseg方法比现有方法更有效。我们的完整实施可在https://github.com/songw-zju/meta-rangeseg上公开获得。
LiDAR sensor is essential to the perception system in autonomous vehicles and intelligent robots. To fulfill the real-time requirements in real-world applications, it is necessary to efficiently segment the LiDAR scans. Most of previous approaches directly project 3D point cloud onto the 2D spherical range image so that they can make use of the efficient 2D convolutional operations for image segmentation. Although having achieved the encouraging results, the neighborhood information is not well-preserved in the spherical projection. Moreover, the temporal information is not taken into consideration in the single scan segmentation task. To tackle these problems, we propose a novel approach to semantic segmentation for LiDAR sequences named Meta-RangeSeg, where a new range residual image representation is introduced to capture the spatial-temporal information. Specifically, Meta-Kernel is employed to extract the meta features, which reduces the inconsistency between the 2D range image coordinates input and 3D Cartesian coordinates output. An efficient U-Net backbone is used to obtain the multi-scale features. Furthermore, Feature Aggregation Module (FAM) strengthens the role of range channel and aggregates features at different levels. We have conducted extensive experiments for performance evaluation on SemanticKITTI and SemanticPOSS. The promising results show that our proposed Meta-RangeSeg method is more efficient and effective than the existing approaches. Our full implementation is publicly available at https://github.com/songw-zju/Meta-RangeSeg .