论文标题
基于神经体系结构搜索的高效端到端3D体素重建
An Efficient End-to-End 3D Voxel Reconstruction based on Neural Architecture Search
论文作者
论文摘要
使用神经网络代表3D对象已变得流行。但是,许多以前的作品采用具有固定体系结构和大小的神经网络来表示不同的3D对象,这导致简单对象的网络参数过多,并且对复杂对象的重建精度有限。对于每个3D模型,希望拥有尽可能少的参数以实现高保真重建的端到端神经网络。在本文中,我们提出了一种利用神经体系结构搜索(NAS)和二进制分类的有效体素重建方法。以层数,每一层的节点数量以及每一层的激活函数为搜索空间,可以根据强化学习技术获得特定的网络体系结构。此外,为了摆脱网络推断后使用的传统表面重建算法(例如,行进的立方体),我们通过对二进制体素进行分类来完成端到端网络。与其他签名的距离字段(SDF)预测或二进制分类网络相比,我们的方法使用更少的网络参数获得了更高的重建精度。
Using neural networks to represent 3D objects has become popular. However, many previous works employ neural networks with fixed architecture and size to represent different 3D objects, which lead to excessive network parameters for simple objects and limited reconstruction accuracy for complex objects. For each 3D model, it is desirable to have an end-to-end neural network with as few parameters as possible to achieve high-fidelity reconstruction. In this paper, we propose an efficient voxel reconstruction method utilizing neural architecture search (NAS) and binary classification. Taking the number of layers, the number of nodes in each layer, and the activation function of each layer as the search space, a specific network architecture can be obtained based on reinforcement learning technology. Furthermore, to get rid of the traditional surface reconstruction algorithms (e.g., marching cube) used after network inference, we complete the end-to-end network by classifying binary voxels. Compared to other signed distance field (SDF) prediction or binary classification networks, our method achieves significantly higher reconstruction accuracy using fewer network parameters.