论文标题
一个简单的离散化计划,用于增益矩阵调理
A Simple Discretization Scheme for Gain Matrix Conditioning
论文作者
论文摘要
在工业模型预测控制器(MPC)中,基于回归的系统识别方法产生的模型通常包含小甚至物理上不存在的自由度。当稳态优化器使用这些小度的自由度来计算由于矩阵不良条件引起的植物操作目标时,可能会出现控制问题。数学技术(例如相对增益阵列(RGA)和单数值分解(SVD))有助于分析控制器增益相互作用和识别调节问题,这些问题可以在小型模型中相对容易纠正。但是,这些技术很难申请更大,更复杂的模型。本文介绍了一种新颖的,非著作,基于RGA的封装技术,用于离散增益矩阵并快速解决任何模型大小的2x2条件问题,同时确保增益调整低于一定阈值。还讨论了高阶互动。
In industrial model predictive controllers (MPCs), models generated from regression-based system identification methods typically contain small or even physically non-existent degrees of freedom. Control issues can arise when the steady-state optimizer uses these small degrees of freedom to calculate targets for plant operation due to matrix ill-conditioning. Mathematical techniques like Relative Gain Array (RGA) and Singular Value Decomposition (SVD) are helpful for analyzing controller gain interactions and identifying conditioning issues, which can be corrected relatively easily in small models. However, these techniques are difficult and tedious to apply for larger, more complex models. This paper describes a novel, non-iterative, RGA-based, binning technique for discretizing the gain matrix and quickly solving 2x2 conditioning issues for any model size, while guaranteeing gain adjustments below a certain threshold. Higher order interactions are also discussed.