论文标题

在全球长期空间中,区域本地对手学到的一级分类器异常检测

Regional-Local Adversarially Learned One-Class Classifier Anomalous Sound Detection in Global Long-Term Space

论文作者

Sha, Yu, Faber, Johannes, Gou, Shuiping, Liu, Bo, Li, Wei, Schramm, Stefan, Stoecker, Horst, Steckenreiter, Thomas, Vnucec, Domagoj, Wetzstein, Nadine, Widl, Andreas, Zhou, Kai

论文摘要

异常的声音检测(ASD)是在复杂的工业系统中监测和维护的最重要的任务之一。实际上,至关重要的是要确切确定工作机械系统的异常状态,这可以进一步促进故障故障排除。在本文中,我们提出了一个多模式的对抗性学习单级分类框架,该框架使我们能够同时使用对抗模型的生成器和歧视者来进行有效的ASD。核心思想是学会通过自动编码发电机的两种不同模式来重建声学数据的正常模式,该模式成功地扩展了歧视者的基本作用,从识别真实和伪造数据以区分区域模式和局部模式重建。此外,我们为频域空间中的长期相互作用提供了一个全局过滤层,该滤波器直接从原始数据中学习而不引入任何人类先验。来自不同工业领域的四个现实世界数据集(Samson AG提供的三个空化数据集,一个公开检测)进行的广泛实验显示出卓越的结果,并且表现优于最新的最新ASD ASD方法。

Anomalous sound detection (ASD) is one of the most significant tasks of mechanical equipment monitoring and maintaining in complex industrial systems. In practice, it is vital to precisely identify abnormal status of the working mechanical system, which can further facilitate the failure troubleshooting. In this paper, we propose a multi-pattern adversarial learning one-class classification framework, which allows us to use both the generator and the discriminator of an adversarial model for efficient ASD. The core idea is learning to reconstruct the normal patterns of acoustic data through two different patterns of auto-encoding generators, which succeeds in extending the fundamental role of a discriminator from identifying real and fake data to distinguishing between regional and local pattern reconstructions. Furthermore, we present a global filter layer for long-term interactions in the frequency domain space, which directly learns from the original data without introducing any human priors. Extensive experiments performed on four real-world datasets from different industrial domains (three cavitation datasets provided by SAMSON AG, and one existing publicly) for anomaly detection show superior results, and outperform recent state-of-the-art ASD methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源