论文标题
半导体Znin2x4(X = S,SE,TE)单层的机械,光学和热电特性
Mechanical, optical, and thermoelectric properties of semiconducting ZnIn2X4 (X= S, Se, Te) monolayers
论文作者
论文摘要
Znin2x4单层的机械稳定性。 Znin2S4和Znin2Se4是半导体,直接带隙分别为3.94和2.77 eV,而Znin2Te4在G0W0级别显示的间接带隙为1.84 eV。从伯特 - 盐分方程的溶液中获得的光学特性预测了Znin2S4,Znin2Se4和Znin2Te4单层的激子结合能分别为0.51、0.41和0.34 EV,表明抗激态抗热解体的兴奋型状态的高稳定性。使用机器学习间的原子间电位加速的玻尔兹曼传输方程的迭代溶液,Znin2S4,Znin2Se4和Znin2Te4单层的室温晶格导热率分别为5.8、2.0和0.4 w/mk。由于晶格导热率低,热电器高以及优点的大数字,我们建议Znin2Se4和Znin2te4单层作为热电能量转换系统的有希望的候选者。这项研究提供了有关Znin2x4纳米片的内在物理特性的广泛视野,并突出了其能量转化和光电应用的特征。
Mechanical stability of the ZnIn2X4 monolayers. The ZnIn2S4 and ZnIn2Se4 are semiconductors with direct band gaps of 3.94 and 2.77 eV, respectively whereas the ZnIn2Te4 shows an indirect band gap of 1.84 eV at the G0W0 level. The optical properties achieved from the solution of the Bethe-Salpeter equation predict the exciton binding energy of the ZnIn2S4, ZnIn2Se4, and ZnIn2Te4 monolayers to be 0.51, 0.41, and 0.34 eV, respectively, suggesting the high stability of the excitonic states against thermal dissociation. Using the iterative solutions of the Boltzmann transport equation accelerated by machine learning interatomic potentials, the room-temperature lattice thermal conductivity of the ZnIn2S4, ZnIn2Se4, and ZnIn2Te4 monolayers is predicted to be remarkably low as 5.8, 2.0, and 0.4 W/mK, respectively. Due to the low lattice thermal conductivity, high thermopower, and large figure of merit, we propose the ZnIn2Se4 and ZnIn2Te4 monolayers as promising candidates for thermoelectric energy conversion systems. This study provides an extensive vision concerning the intrinsic physical properties of the ZnIn2X4 nanosheets and highlights their characteristics for energy conversion and optoelectronics applications.