论文标题

E1和M1巨型共振的非著名有限振幅方法

Non-iterative finite amplitude methods for E1 and M1 giant resonances

论文作者

Sasaki, Hirokazu, Kawano, Toshihiko, Stetcu, Ionel

论文摘要

有限振幅方法(FAM)是一种非常有效的方法,用于求解完全自洽的随机相近似(RPA)方程。我们使用FAM来重新启动RPA矩阵,以用于一般的Skyrme样功能,计算电偶极子(E1)和磁性偶极子(M1)巨型共振,并将结果与​​可用的实验和评估数据进行比较。对于重核中的E1跃迁,计算很好地再现了光吸附横截面的共振能。在M1转变的情况下,我们表明残留相互作用不会影响双魔法核的过渡强度,这表明当前计算中当前忽略的Skyrme力中的自旋项可以改善FAM和实验数据之间的一致性。

The finite amplitude method (FAM) is a very efficient approach for solving the fully self-consistent random-phase approximation (RPA) equations. We use FAM to rederive the RPA matrices for general Skyrme-like functionals, calculate the electric dipole (E1) and the magnetic dipole (M1) giant resonances, and compare the results with available experimental and evaluated data. For the E1 transitions in heavy nuclei, the calculations reproduce well the resonance energy of the photoabsorption cross sections. In the case of M1 transitions, we show that the residual interaction does not affect the transition strength of double-magic nuclei, which suggests that the spin terms in the Skyrme force currently neglected in the present computation could improve the agreement between FAM and experimental data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源