论文标题
在真实空间中的耦合量子涡流运动学和浆果曲率
Coupled quantum vortex kinematics and Berry curvature in real space
论文作者
论文摘要
浆果曲率提供了一种强大的工具,可以通过其几何方面统一科学的几个分支:拓扑,能带,自旋和向量场。尽管量子缺陷 - 相位涡流和天空 - 随着冷凝水,超流体和光学的旋转实体的焦点,但它们在多组分字段中的动力学仍然很少探索。在这里,我们使用两个组分的微腔极化子以双重全布洛克梁的形式将动态的伪旋转纹理印记,这是一个超出单一天空之外的共形连续涡流。浆果曲率起着关键作用,可以将可用于描述此类纹理的各种量子空间联系起来。它解释了例如,超快在两个奇异涡流的真实空间中螺旋形,特别是简单的表达(也涉及复杂的狂犬病频率),以使其复杂的速度。这种浆果连接开辟了新的观点,用于理解和控制高度结构化的量子对象,包括强烈的不对称情况,甚至更高的多组分字段。
The Berry curvature provides a powerful tool to unify several branches of science through their geometrical aspect: topology, energy bands, spin and vector fields. While quantum defects -- phase vortices and skyrmions -- have been in the spotlight, as rotational entities in condensates, superfluids and optics, their dynamics in multi-component fields remain little explored. Here we use two-component microcavity polaritons to imprint a dynamical pseudospin texture in the form of a double full Bloch beam, a conformal continuous vortex beyond unitary skyrmions. The Berry curvature plays a key role to link various quantum spaces available to describe such textures. It explains for instance the ultrafast spiraling in real space of two singular vortex cores, providing in particular a simple expression -- also involving the complex Rabi frequency -- for their intricate velocity. Such Berry connections open new perspectives for understanding and controlling highly-structured quantum objects, including strongly asymmetric cases or even higher multi-component fields.