论文标题
通过突变刺激法计算最大代数的特征向量
Calculating eigenvectors in max-algebra by mutation-sunflower method
论文作者
论文摘要
在本文中,我们介绍了一种新方法,我们将其称为突变 - 避风器方法,用于计算非负不可约的$ n \ times n $ matrix $ a $的最大eigenvectors。我们的方法在一般不可约束的情况下起作用,但与现有方法相比,对于某些特殊类别的矩阵,例如对于稀疏的矩阵而言,它最有效。我们的方法减少了为简单突变 - 避风器矩阵求解最大 - eigenproblems,这些矩阵在每一行中恰好有一个积极的入口。我们包括一些有启发性的例子。
In this article we introduce a new method, which we call a mutation-sunflower method, for calculating max-eigenvectors of a nonnegative irreducible $n\times n$ matrix $A$. Our method works in the general irreducible case, but it is in comparison with existing methods most effective for some special classes of matrices for example for sparse enough matrices. Our method reduces to solving max-eigenproblems for simple mutation-sunflower matrices that have exactly one positive entry in each row. We include some instructive examples.