论文标题
特征2中的二次形式2
Equivariant quadratic forms in characteristic 2
论文作者
论文摘要
让$ g $为有限的组,而$ k $有限的特征$ 2 $。用$ t $表示换向因子组$ g/g'$的$ 2 $ - 量列,而$ s $自dual simple $ kg $ - $ modules的数量。然后,witt iporianiant二次表格$ \ wq(k,g)$对基本的Abelian $ 2 $ - 等级$ s+t $是同构。
Let $G$ be a finite group and $K$ a finite field of characteristic $2$. Denote by $t$ the $2$-rank of the commutator factor group $G/G'$ and by $s$ the number of self-dual simple $KG$-modules. Then the Witt group of equivariant quadratic forms $\WQ (K,G)$ is isomorphic to an elementary abelian $2$-group of rank $s+t$.