论文标题

体积视频的准确人体重建

Accurate Human Body Reconstruction for Volumetric Video

论文作者

Chen, Decai, Worchel, Markus, Feldmann, Ingo, Schreer, Oliver, Eisert, Peter

论文摘要

在这项工作中,我们增强了专业的端到端体积视频生产管道,以仅使用被动摄像机实现高保真的人体重建。尽管当前的体积视频方法使用传统的立体声匹配技术估算了深度图,但我们介绍并优化了基于深度学习的多视图立体网络,以在专业体积视频重建的背景下进行深度图估计。此外,我们提出了一种新颖的深度图后处理方法,包括过滤和融合,考虑到光度置信度,跨视图几何一致性,前景掩码以及摄像机查看flustums。我们表明,我们的方法可以为重建的人体生成高水平的几何细节。

In this work, we enhance a professional end-to-end volumetric video production pipeline to achieve high-fidelity human body reconstruction using only passive cameras. While current volumetric video approaches estimate depth maps using traditional stereo matching techniques, we introduce and optimize deep learning-based multi-view stereo networks for depth map estimation in the context of professional volumetric video reconstruction. Furthermore, we propose a novel depth map post-processing approach including filtering and fusion, by taking into account photometric confidence, cross-view geometric consistency, foreground masks as well as camera viewing frustums. We show that our method can generate high levels of geometric detail for reconstructed human bodies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源