论文标题

Riconv ++:3D点云的有效旋转不变卷积深度学习

RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds Deep Learning

论文作者

Zhang, Zhiyuan, Hua, Binh-Son, Yeung, Sai-Kit

论文摘要

3D点云深度学习是一个有希望的研究领域,它使神经网络可以直接学习点云的特征,从而成为解决3D场景理解任务的强大工具。虽然最近的作品表明,点云卷积可能是翻译和点排列的不变性,但到目前为止,对点云卷积的旋转不变性属性的调查一直很少。一些现有方法具有旋转不变特征的点云卷积,现有方法通常不像翻译不如对应的翻译不一样。在这项工作中,我们认为一个关键原因是与点坐标相比,旋转不变的特征由点云卷积消耗并不那么独特。为了解决这个问题,我们提出了一个简单而有效的卷积操作员,该操作员通过设计本地区域的强大旋转不变特征来增强特征的区别。我们考虑兴趣点与其邻居以及邻居之间的关系之间的关系,以在很大程度上提高特征描述性。我们的网络体系结构可以通过简单地调整每个卷积层中的邻域大小来捕获本地和全局上下文。我们对合成和现实点云分类,部分分割和形状检索进行了几项实验,以评估我们的方法,这些方法在具有挑战性的旋转下实现了最新的精度。

3D point clouds deep learning is a promising field of research that allows a neural network to learn features of point clouds directly, making it a robust tool for solving 3D scene understanding tasks. While recent works show that point cloud convolutions can be invariant to translation and point permutation, investigations of the rotation invariance property for point cloud convolution has been so far scarce. Some existing methods perform point cloud convolutions with rotation-invariant features, existing methods generally do not perform as well as translation-invariant only counterpart. In this work, we argue that a key reason is that compared to point coordinates, rotation-invariant features consumed by point cloud convolution are not as distinctive. To address this problem, we propose a simple yet effective convolution operator that enhances feature distinction by designing powerful rotation invariant features from the local regions. We consider the relationship between the point of interest and its neighbors as well as the internal relationship of the neighbors to largely improve the feature descriptiveness. Our network architecture can capture both local and global context by simply tuning the neighborhood size in each convolution layer. We conduct several experiments on synthetic and real-world point cloud classifications, part segmentation, and shape retrieval to evaluate our method, which achieves the state-of-the-art accuracy under challenging rotations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源