论文标题
部分可观测时空混沌系统的无模型预测
Energy balance and Alfvén Mach numbers in compressible magnetohydrodynamic turbulence with a large-scale magnetic field
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Energy equipartition is a powerful theoretical tool for understanding astrophysical plasmas. It is invoked, for example, to measure magnetic fields in the interstellar medium (ISM), as evidence for small-scale turbulent dynamo action, and, in general, to estimate the energy budget of star-forming molecular clouds. In this study we motivate and explore the role of the volume-averaged root-mean-squared (rms) magnetic coupling term between the turbulent, $δ\mathbf{B}$ and large-scale, $\mathbf{B}_0$ fields, $\left< (δ\mathbf{B}\cdot\mathbf{B}_0)^{2} \right>^{1/2}_{\mathcal{V}}$. By considering the second moments of the energy balance equations we show that the rms coupling term is in energy equipartition with the volume-averaged turbulent kinetic energy for turbulence with a sub-Alfvénic large-scale field. Under the assumption of exact energy equipartition between these terms, we derive relations for the magnetic and coupling term fluctuations, which provide excellent, parameter-free agreement with time-averaged data from 280 numerical simulations of compressible MHD turbulence. Furthermore, we explore the relation between the turbulent, mean-field and total Alfvén Mach numbers, and demonstrate that sub-Alfvénic turbulence can only be developed through a strong, large-scale magnetic field, which supports an extremely super-Alfvénic turbulent magnetic field. This means that the magnetic field fluctuations are significantly subdominant to the velocity fluctuations in the sub-Alfvénic large-scale field regime. Throughout our study, we broadly discuss the implications for observations of magnetic fields and understanding the dynamics in the magnetised ISM.