论文标题

部分可观测时空混沌系统的无模型预测

Solving Large-Scale Dynamic Vehicle Routing Problems with Stochastic Requests

论文作者

Zhang, Jian, Luo, Kelin, Florio, Alexandre M., Van Woensel, Tom

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Dynamic vehicle routing problems (DVRPs) arise in several applications such as technician routing, meal delivery, and parcel shipping. We consider the DVRP with stochastic customer requests (DVRPSR), in which vehicles must be routed dynamically with the goal of maximizing the number of served requests. We model the DVRPSR as a multi-stage optimization problem, where the first-stage decision defines route plans for serving scheduled requests. Our main contributions are knapsack-based linear models to approximate accurately the expected reward-to-go, measured as the number of accepted requests, at any state of the stochastic system. These approximations are based on representing each vehicle as a knapsack with a capacity given by the remaining service time available along the vehicle's route. We combine these approximations with optimal acceptance and assignment decision rules and derive efficient and high-performing online scheduling policies. We further leverage good predictions of the expected reward-to-go to design initial route plans that facilitate serving dynamic requests. Computational experiments on very large instances based on a real street network demonstrate the effectiveness of the proposed methods in prescribing high-quality offline route plans and online scheduling decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源