论文标题
用于软机器人操作的物理信息模拟模型:使用介电弹性体执行器的案例研究
Learning physics-informed simulation models for soft robotic manipulation: A case study with dielectric elastomer actuators
论文作者
论文摘要
软执行器为轻柔的抓握和灵活的操纵等任务提供了一种安全,适应性的方法。但是,由于可变形材料的复杂物理学,创建准确的模型来控制此类系统是具有挑战性的。准确的有限元方法(FEM)模型具有用于闭环使用的过度计算复杂性。使用可区分的模拟器是一种有吸引力的替代方案,但是它们对软执行器的适用性和可变形材料仍然没有被忽略。本文提出了一个结合两者优势的框架。我们学习了一个由材料属性神经网络和其余操纵任务的分析动力学模型组成的可区分模型。使用从FEM生成的数据训练该物理信息的模型,可用于闭环控制和推理。我们在介电弹性体执行器(DEA)投掷任务上评估了我们的框架。我们模拟使用DEA使用摩擦接触,使用FEM沿着表面拉动硬币的任务,并评估物理信息模型以进行模拟,控制和推理。与FEM相比,我们的模型达到了<5%的模拟误差,我们将其用作MPC控制器的基础,该MPC控制器比无模型的参与者 - 批评者,PD和启发式策略所需的迭代次数更少。
Soft actuators offer a safe, adaptable approach to tasks like gentle grasping and dexterous manipulation. Creating accurate models to control such systems however is challenging due to the complex physics of deformable materials. Accurate Finite Element Method (FEM) models incur prohibitive computational complexity for closed-loop use. Using a differentiable simulator is an attractive alternative, but their applicability to soft actuators and deformable materials remains underexplored. This paper presents a framework that combines the advantages of both. We learn a differentiable model consisting of a material properties neural network and an analytical dynamics model of the remainder of the manipulation task. This physics-informed model is trained using data generated from FEM, and can be used for closed-loop control and inference. We evaluate our framework on a dielectric elastomer actuator (DEA) coin-pulling task. We simulate the task of using DEA to pull a coin along a surface with frictional contact, using FEM, and evaluate the physics-informed model for simulation, control, and inference. Our model attains < 5% simulation error compared to FEM, and we use it as the basis for an MPC controller that requires fewer iterations to converge than model-free actor-critic, PD, and heuristic policies.