论文标题
在受限控制下的最佳有限时间热发动机
Optimal finite-time heat engines under constrained control
论文作者
论文摘要
我们优化了有限的随机热发动机,并在实验动机的浴室温度$ t $和缩放参数$λ$的实验动机约束下使用定期缩放的哈密顿量。我们提供了一个一般的几何证据,表明$ t $和$λ$的最大效率协议是分段常数,在最大和最小允许的值之间交替。当$λ$仅限于一个小范围,并且系统在等温线的末端接近平衡时,类似的参数表明,该协议也最大化了输出功率。这些结果对于任意动态有效。我们为它们提供了过度引导的布朗热发动机的说明,可以使用刚度$λ$的光学镊子在实验上实现。
We optimize finite-time stochastic heat engines with a periodically scaled Hamiltonian under experimentally motivated constraints on the bath temperature $T$ and the scaling parameter $λ$. We present a general geometric proof that maximum-efficiency protocols for $T$ and $λ$ are piecewise constant, alternating between the maximum and minimum allowed values. When $λ$ is restricted to a small range and the system is close to equilibrium at the ends of the isotherms, a similar argument shows that this protocol also maximizes output power. These results are valid for arbitrary dynamics. We illustrate them for an overdamped Brownian heat engine, which can experimentally be realized using optical tweezers with stiffness $λ$.