论文标题

具有可计数矢量空间的Banach空间的反射性

Reflexivity of a Banach Space with a Countable Vector Space Basis

论文作者

Rabin, Michael Oser, Ravi, Duggirala

论文摘要

实际或复杂的序列和复杂域和序列上的所有功能空间在实践中作为标准完整的线性空间(Banach空间)的示例在实践中都是反射性的。这些BANACH空间对相应的BANACH空间上的连续线性功能各自的空间是双重的。对于这些Banach空间中的每一个,都存在可数的矢量空间基础,这是其反射性的原因。在本文中,提出了具有可数矢量空间基础的Banach空间反射性的特定标准。

All most all the function spaces over real or complex domains and spaces of sequences, that arise in practice as examples of normed complete linear spaces (Banach spaces), are reflexive. These Banach spaces are dual to their respective spaces of continuous linear functionals over the corresponding Banach spaces. For each of these Banach spaces, a countable vector space basis exists, which is responsible for their reflexivity. In this paper, a specific criterion for reflexivity of a Banach space with a countable vector space basis is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源