论文标题

一种分析方法,用于量化随机固体溶液中能量景观的统计数据

An analytical method to quantify the statistics of energy landscapes in random solid solutions

论文作者

Jagatramka, Ritesh, Wang, Chu, Daly, Matthew

论文摘要

对浓缩溶液的最新研究突出了各种溶质相互作用在确定各种中尺度性质中的作用。这些溶质相互作用是势能的空间波动,这是由于化学环境中局部变化引起的。尽管在文献中对势能波动的观察得到了充分的文献证明,但仍有很少的方法来确定其统计数据。在这里,我们提出了一组分析方程,以量化随机排列的固定溶液中势能景观的统计数据。我们的方法基于对溶质协调环境的嵌入原子方法关系的重新聚集。最终方程是通用的,可以应用于不同的晶体晶格和能量景观,前提是感兴趣的系统可以通过协调关系一组描述。我们利用这些统计关系来研究几种不同固体解决方案的凝聚力和普遍的平面断层能量景观。分析预测是使用分子静态模拟验证的,在大多数情况下,这些模拟在大多数情况下都发现了极好的一致性。该分析的结果为相位稳定性和对固体解决方案中当地平面故障能量的解释提供了新的见解,这些解决方案是社区中正在进行的讨论的主题。

Recent studies of concentrated solid solutions have highlighted the role of varied solute interactions in the determination of a wide variety of mesoscale properties. These solute interactions emerge as spatial fluctuations in potential energy, which arise from local variations in the chemical environment. Although observations of potential energy fluctuations are well documented in the literature, there remains a paucity of methods to determine their statistics. Here, we present a set of analytical equations to quantify the statistics of potential energy landscapes in randomly arranged solid solutions. Our approach is based on a reparameterization of the relations of the embedded atom method in terms of the solute coordination environment. The final equations are general and can be applied to different crystal lattices and energy landscapes, provided the systems of interest can be described by sets of coordination relations. We leverage these statistical relations to study the cohesive energy and generalized planar fault energy landscapes of several different solid solutions. Analytical predictions are validated using molecular statics simulations, which find excellent agreement in most cases. The outcomes of this analysis provide new insights into phase stability and the interpretation of local planar fault energies in solid solutions, which are topics of ongoing discussion within the community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源