论文标题

结晶驱动的白矮人发电机的对流缓慢和快速旋转

Slow convection and fast rotation in crystallization-driven white dwarf dynamos

论文作者

Ginzburg, Sivan, Fuller, Jim, Kawka, Adela, Caiazzo, Ilaria

论文摘要

最近有人提出,白矮人在类似地球的过程中产生磁场。核心的结晶产生了一个组成反演,可驱动对流,并与旋转结合使用,这可以维持磁力发电机。我们重新分析了由核心缓慢结晶而产生的发电机机制,并找到对流的周转时间$ t _ {\ rm conv} $几周到几个月 - 比以前想象的要长。随着白色矮人的自旋周期$ p \ ll t _ {\ rm cons} $,结晶驱动的发电机几乎总是处于快速旋转的方向上,其中磁场$ b $至少在对流运动中处于均衡状态,并且可能会进一步增强$ b \ b \ propto(t _ p _ {\ rm rm rm rm rm rm rm}}^{1/p)扩展法。我们使用MESA跟踪结晶的核心的生长,并计算磁场$ b(t _ {\ rm eff})$作为白矮人的有效温度$ t _ {\ rm eff} $的函数。我们将这种预测与观察结果进行了比较,并表明结晶驱动的发电机可以解释一些(但不是全部)$ \ sim $ mg磁场,用于单个白色矮人测量的$ \ sim $ mg磁场,以及针对白矮人测量的较强的磁场,这些场是灾难性变量的,这些变量被大规模增添了大规模的速度,这些变量被大规模增添了$ p $ p $ p $ p $ p $。我们的$ b(t _ {\ rm eff})$ curves也可能解释了白色矮人的聚类,围绕$ t _ {\ rm eff} \大约7500 \ textrm {k} $。

It has been recently suggested that white dwarfs generate magnetic fields in a process analogous to the Earth. The crystallization of the core creates a compositional inversion that drives convection, and combined with rotation, this can sustain a magnetic dynamo. We reanalyse the dynamo mechanism, arising from the slow crystallization of the core, and find convective turnover times $t_{\rm conv}$ of weeks to months - longer by orders of magnitude than previously thought. With white dwarf spin periods $P\ll t_{\rm conv}$, crystallization-driven dynamos are almost always in the fast rotating regime, where the magnetic field $B$ is at least in equipartition with the convective motion and is possibly further enhanced by a factor of $B\propto (t_{\rm conv}/P)^{1/2}$, depending on the assumed dynamo scaling law. We track the growth of the crystallized core using MESA and compute the magnetic field $B(T_{\rm eff})$ as a function of the white dwarf's effective temperature $T_{\rm eff}$. We compare this prediction with observations and show that crystallization-driven dynamos can explain some - but not all - of the $\sim$MG magnetic fields measured for single white dwarfs, as well as the stronger fields measured for white dwarfs in cataclysmic variables, which were spun up by mass accretion to short $P$. Our $B(T_{\rm eff})$ curves might also explain the clustering of white dwarfs with Balmer emission lines around $T_{\rm eff}\approx 7500\textrm{ K}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源